이해원모의고사 1회 29번 풀이 과정에 대한 질문입니다.
게시글 주소: https://sex.orbi.kr/0003063188
해설지를 보니 이면각의 정의를 이용한 풀이를 하던데요.
면 QPA 와 면 QOA가 이루는 이면각을 a, 면 QOA와 면 QAB가 이루는 이면각을 b라고 나누어
생각한 다음, cos(a+b)를 이용해서 풀었는데 논리적 오류가 없을까요?
먼저 각 a는 선분PA가 선분 OA, QA와 모두 수직이라 애초에 정사영이 생기지 않으므로
그림자의 면적이 0이라 cosa=0이라고 계산했구요.
각 b는 선분 QA와 선분 OA(연장선) 위에 점 B에서 수선의 발을 내린 다음 양쪽 직각을 만들어
삼수선의 정리를 이용해 cosb= (root6) / 3 으로 구했습니다.
이후에 cos 덧셈정리를 이용해 구해도 cos(a+b)는 - (root3)/3 으로 나오네요.
제곱하면 1/3이구요.
해설지의 풀이도 중간과정까진 생각했는데 삼각형 QAB가 직각이라는 사실을 빨리 못찾아서
결국 이렇게 풀었네요. 혹시 어쩌다 얻어걸려서 답만 같은건지 불안해서요. 확인 좀 ^^;;;
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뭔가 인강듣는 시간 아깝고 2배속으로들어도 뭔말인지 알아들어서 강의는 다 2배속으로 돌려봤었는데
-
얼마전에 우승컵 하나따긴했는데… 주축선수들 폼이 안돌아옴 테오는 너무 갈려서 폭발력이 죽음
-
커뮤가 이래서 무서워
-
옛날 글 찾기 10
태초의 글 https://orbi.kr/00057321491 이전 것도 있는데...
-
오르비 1
처음엔 닉 대애충 짓고 그냥 가끔 들려보면서독존님들 글 보면서 오 수2 이런 것도...
-
브론즈5명vs챌린저5명 해도 1557은 쉽지않을듯…
-
5~래전에 2
함께 듣던 노래가~
-
경찰들 때리고 밀고 방패 탈취하고 법원부수고 ㅋㅋ 고담시티같음
-
진짜 망함 11
4자리 숫자만 보면 1557 생각남..
-
이제 거의다 성인이라는 게 믿을수가없네
-
진격거도 끝나니까 진짜 최신 애니들 볼게 없네
-
근데 그때 프사 아는분은 조금 있더라구요 그러므로 그때 프사이자 제 첫 프사 댓글로...
-
무만 겁나게캐더니 왠일이냐 예전처럼 리그좀먹어보자
-
뭐지 내가 못해진건가
-
살면서 재밋던거 시간순 30
한자축구축구그림그리기롤축구농구 칼리스데닉스헬스수학수학수학수학지금은 없음
-
이쪽이든 저쪽이든 사고 조심하시고 혹시모를 구급낭같은거 챙기시면 더좋고요 안전 명심하세요
-
진짜 궁금해서
-
ㄹㅇ 개 시끄러움 ㅋㅋㅋ
-
와 발로는 보이스가 잇다고 짱이다하고 가서 그냥 겜 돌리때마다 매일 보이스 키고...
-
잼민이 목소리로 가오 잡거나 깝치는데 개현타옴
-
욕 한 번을 1년에 쓸까말까한 ㄹㅇ 클린 유저
-
채팅을 치면 그냥 게임을 못 이겨그래서 걍 전번 주는 것임 채팅치지말고 전화로...
-
언더테일 진짜 재밋엇음 사실 이미지가 좃망해서 그렇지..
-
안녕 ㅃㅇ 2
나 자는동안 내 글 많이 읽어줘 그런거 지금은 안웃길지 몰라도 꼭 혼자 멍때리다가...
-
답지 활용법. 3
결론은 해볼 수 잇는 아이디어를 다 써보고 답지를 보는 것. 그리고 답지를 제대로...
-
그냥 오버워치를 너무 사랑할 때가 있었는데 역할고정 나오고 정 다털려서 접음 딜러...
-
메이플 공익 ㅇㅇ 유니온 9천이상 본캐 290이상은 메공가자
-
나한테 옵치란 6
바야흐로 롤이 헬퍼때매 망한다 하하캬 논란이 졸라 심하던 시절 옵칠로 갈아타서...
-
시호게이가 풀길 바랬지만 넘 늦게 올렸으니... 낮에 다른걸로 다시 가져와야겠음뇨
-
아니 구속은 0
ㅅㅂ 이거 맞아? 이재명은 안되는데…
-
내 어설픈 논리와 지능으로는 개털릴 확률이 높아서 누가 시비를 걸면 ‘뭐래병신이’...
-
나 ㄹㅇ 지원금 받나 교재 살 수 있남......
-
ㅋㅋ
-
1.수능장에선 니가 평소 니껄로 만들었던 습관아니면 사용못한다. 2.수능날에...
-
둘다 서류합 면접떨 근데 서류경쟁률도 상당히 빡셌음
-
근데 라면이 잡혀갔음 왜인지암? 참기름이 고소해서. 근데 얼마뒤 참기름도 잡혀갔음....
-
잡담볼려고 팔로우하는건데 왜 잡담태그 달라는 건지 이해를 못했었음
-
애초에 거의 혼자하는 게임만 해왔고 다같이 하는 게임이어도 제가 못해서 욕먹는 실력이라...
-
[속보] 법원, 윤석열 대통령 구속영장 발부…헌정사 최초 6
윤석열 대통령에 대한 구속영장이 발부됐다. 현직 대통령에게 구속영장이 발부된 것은...
-
중3겨울 공부량 3
재업
-
맞팔하실분
-
진짜 유배지로 보내버림
-
좆같이 처 못하는 새끼들이 아가리까지 털면 진짜 고려장 시켜리고 싶다니까?
-
o1은 뭔가요
-
롤 정지썰 6
중학교때긴 한데정지를 조금 자주 먹어서 계정은 3개엿음.그 중에 2개가 30일...
-
대신 한번 삔또나가면 던지진 않고 그냥 겜 놔버림 무한 머리박기하고 한타할때도 딜 안함
-
✊️✊️✊️
세평면 QPA, QBA, QOA 모두 QA 를 하나의 교선으로 가지고 있기때문에 위의 방법대로 풀어도 전혀 논리적 모순 없습니다.
QA에 수직이 되는 평면으로 잘라 단면화 해보시면 결국 님이 말한 삼각함수의 덧셈정리를 이용한 풀이로 귀결 되는것을 알 수 있습니다.
다만 각 b를 구하는 방법에 대해서는 좀 의문이네요..
모든 변의 길이를 구해보면 QBA는 정삼각형이고 , 따라서 B에서 교선 QA 상에 내린 수선의 발은 선분 QA 의 중점에 찍히게 됩니다.
다시 한번 확인해 주셨으면 합니다 .
해설지처럼 QA의 중점을 M이라고 했을때. 그것이 점 B에서 내린 수선의 발인것은 맞습니다.
그리고 점 B에서 평면 QOA에 내린 수선의 발은 점 O가 아닙니다.(각BOA가 120도이기 때문에)
따라서 선분OA의 연장선 위에 점 B에서 먼저 수선의 발을 내리고, 그 점을 C라 하면 선분 BC의 길이는 root6 입니다. (직각삼각형 ACB이고, 각 CAB가 30도이므로)
그럼 BM의 길이가 3이고 BC의 길이가 root6이므로 cosb(이면각의 정의로 만들어진)=root6 / 3 입니다.
저도 그렇게 푼듯하네요. 공간좌표넣어서 햇더니..