수능 수학 - 기출문제를 대하는 자세
게시글 주소: https://sex.orbi.kr/0004546443
1. 안녕하세요~
안녕하세요. 저는 이번에 2014수능을 본 수험생입니다.
2013 수능 수학 가형 1등급 턱걸이의 아쉬움으로 인해 2014 수능을 다시 치르게 되었습니다.
1년 전, 자신 있던 과목에 너무 충격을 먹어서인지 2014학년도에는 만반의 준비를 갖추었고, 다소 과한 나머지(?) 수학만 시간이 45분 정도가 남고...(다른 과목은 망해버렸네요///)
그래도 누군가에게는 1등급 -> 100점 의 과정이 필요할 것 같아서 제 경험을 토대로 글을 써보려 합니다.
(2013학년도 수리 6평/9평/수능 100/88/93 -> 그저 그런 1등급...심지어 10월은 2등급;;
2014학년도 수학 강대 모의고사 포함 모든 모의고사 100점!!)
2. 수학 기출 문제를 공부해야 한다?
여러분은 수학 기출을 왜 풀어야 한다고 생각하나요? 어차피 이 세상에 존재하지 않는 새로운 30문제가 등장할 것이고 또 이상하게 수학은 기출문제를 풀어도 수학 실력이 느는 거 같지가 않은데 말이죠.
그럼 우선, 수학 기출문제를 왜 풀어야 하는지 예시 문항부터 보겠습니다.
다들 아시다 시피 아래문제는 올해 대수능 수학B형 29번 문항입니다.
이 문제를 보고 무슨 생각이 드셨나요?
어렵다. 난해하다. 역시 평가원 짱!!!
이런 생각이 들면 이미 기싸움에서 밀린 겁니다.
이 순간, 문제에 써진 표현을 식으로 옮겨보자는 생각을 한 순간, 문제는 쉬운 방향으로 흘러갑니다. -> 이 이야기는 나중에 다루도록 할게요. : 여러분의 관심이 필요합니다!
다음으로 살펴볼 문제는 2012학년도 대수능 수리 가형 21번 문제입니다.
물론, 이 문제를 시험장에서 직접 겪지는 않아서 처음 봤을 때의 느낌은 잘 기억이 남지 않지만, 꾸준히 수학 공부를 하신 상태에서 고3 후반부가 되면 이 문제의 풀이 방법에는 크게 두 가지라고 거의 외울 정도가 됩니다, (되시는 분이 많습니다, 그렇게 되게 되어있습니다, 그래야 합니다.)
첫째 방법은 평면의 법선 벡터를 직접 설정해서 풀이하는 방법입니다.
두 번째 방법은 법선 벡터 없이 세 평면이 하나의 교선을 가질 때를 생각하고 평면화하여 삼각함수를 이용하여 문제를 푸는 방법입니다.
저는 2014수능 수학B형 29번을 풀면서 21번이 자연스럽게 떠올랐고, 덕분에 평가원을 믿고 다음 단계로 진행할 수 있었습니다. (어떤 과정이었을지 스스로 풀어보시면 좋겠습니다.)
3. 기출문제를 언제, 몇 번씩, 어떻게 풀어야 할까?
위에서 구구절절 예시까지 들며 이야기를 했지만, 사실 기출문제를 푸는 데에 정도는 없습니다. 많이 푸는 놈이 이기고, 평가원의 생각을 쉽게 습득하는 녀석이 이기는 거겠죠.
수험생 게시판에 가끔 “수학은 무조건 기출문제죠?”, “수학, 처음부터 기출문제를 계속 돌리면 점수 오르나요?” 라는 질문이 올라옵니다.
저는 이러한 식의 질문에 단호하게 “아니!” 라고 말하고 싶습니다.
이유는 단 하나입니다.
너무 일찍 풀면 기출문제의 맛을 음미할 수가 없습니다. 고기도 먹어본 놈이 잘 먹는다고 수학문제도 잘 푸는 학생이 잘 풉니다. 수험생 초기에는 기출문제가 눈에는 그냥 복잡한 문제로 밖에 안보입니다. 제 주변에 어떤 학생이 했던 짓을 예시로 들어볼게요.
2012학년도 9월 수리 가형 16번 문항입니다.
다들 아실 겁니다. 저 화살표 부분을 적당히 치환하고 계산을 하면 쉽죠.
그런데 그 학생은 대놓고 A 와 B 를 구하고 있었습니다.
민주주의 나라에서 뭘 하든 자기 마음이겠지만 보는 친구들은 안타까워하며 말렸지만 꿋꿋이 계산해 나가는 모습이 참 보기 좋았습니다.
만일 위와 같은 방식으로 똑같이 3번 풀어놓고 ‘난 기출 세 번 돌림~^^’ 이러고 다닌다면 차라리 안 푸느니만 못한 상황이 되고, 기출문제는 정말 쓰레기 of 쓰레기가 되어버립니다.
저도 1년 전에는 무조건 기출! 기출! 하며 수학 공부를 했었습니다.
하지만, 기출이 능사가 아니더군요.
이 세상에 존재하는 많은 양의 문제를 풀어 수학 전반적인 실력을 쌓은 뒤에 기출을 제대로
보는 것이 초기부터 국어처럼 기출 문제집만 잔뜩 쌓아놓고 이미 풀었던 문제들 또 푸는 것보다 훨씬 낫습니다.
그렇다고, 문제집에 있는 기출문제는 모두 풀지 말라는 뜻은 아닙니다!!! 수험생활 초기에도 수학선생님들은 당연히 기출문제를 들고 수업을 하십니다. 기출문제에서 배울 것은 배워야죠. 단, 닥치고 기출은 아니라는 점입니다. 초기에는 기출을 기출처럼 보지 않는 것도 현명한 방법입니다.
4. 마무리
인생에서 첫 수능을 준비하시는 예비 고3, 혹시 기출에만 목멜 준비하시고 계신가요? 다시 도전하시는 졸업생 분들, 혹시 기출만 맹목적으로 바라보시지 않으셨나요?
기출, 분명히 풀고 시험장 들어가야 합니다. 맹목적으로 추구하는 건 무엇이든 위험합니다. 기출 문제와 타 시중 문제들을 골고루 균형 있게 섭취하며 건강하게 수학 공부하시길 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
쪽지하세요 0
-
그냥 물어본건데 ㅋㅋㅋ 전 113나와요.... 저런 사람 실제로 본적 있어서 ㅋㅋ
-
물2 제발 0
물2 장인수쌤 들은 분 있나요 개념잡기에 어떤가요 아 그리고 물2가 생2처럼 개념만...
-
잘못뽑은 반장 0
이란책 아심?
-
상상이안가
-
여친 재수해서 2월부턴 일주일에 한번 만나는데 아침에 수영 저녁에 달리 운전면허...
-
내일의 나를 너무 잘믿음 내일의 나에게 너무 많은걸 토스함 내일의 나는 내일 모래의...
-
옯창 ㅇㅈ 6
뭐야 7달 전에 왔었네 오늘 온 거 보고 알음
-
하.
-
공부는 기세다 0
LAMY 샤프 사야겠다 없으니까 텐션 떨어지네
-
합성함수에서 속함수가 역함술때 원래함수 그래로 그리고 xy바꿔서 축 맞추기 캬
-
천국의계단 10단계 20분 ㄱㄱ 사람죽어요
-
살찌워보자~~
-
비독원듣는데 본인이 누가 그렇게 말한거 봤다면서 말하시던데 실전에서 하기엔 좀...
-
하아ㅏㅏ... 건대보다 낮은취급 당할까봐 쫄린다 ㅜㅜ
-
갈비ㅇㅈ 17
냠
-
키 174 몸무게 47 키빼몸하면 127나옴
-
카케구루이 트윈만 애니로 조금 봤는데 이게 고등학생들 맞나 ㄷㄷ
-
보이스톡걸었는데 걔도 취해있었음 말깠었는데 기억못하는듯?
-
꿈속에서 설대 자유전공이 치대랑 약대가 된다고 들은 것 같은데 3
진짠가요 그리고 왜 이딴 걸 꿈으로 꾸는 거지
-
끝나자마자 봤는데 ㄹㅇ 자살 마려웠음
-
술주정해본 적 있음
-
부모님이 산거 봤다가는 뭐라 하실지 모르겠어서
-
전 24수능때 과탐한거...
-
구라 같지? 9
각오해^^
-
네......
-
조카가 생기기 시작함.... 나도 돈 뜯길 날이 얼마 안 남았구나
-
70+가 사람임????
-
세뱃돈을 받았다 2
물론 나도 동생들한테 줬다.. 그리고 이제 고1 올라가는 사촌 동생의 통합과학 과외...
-
천만덕 가쥬아
-
밀주일 정도 쓰니 쪼까 싫증 나네
-
여친 ㅇㅈ 6
-
美 법무부, 트럼프 수사 검사 12명 ‘무더기 해고’ 1
[앵커] 취임 일주일을 넘긴 트럼프 미국 대통령, 거침없는 행보를 이어가고...
-
갤탭 사야지 4
s10+가 12.4인치던데 이정도면 필기하는데 불편함은 없겠죠?
-
어캐하죠
-
. 2
-
엄마 아빠는 각자 부모님 집으로 가라 자신도 자신의 부모 집에 있겠다 발언하며 엄마...
-
레어사요 7
레어사요...
-
원래 모르는건 2번찍기로 결심햇엇는데(정치x) 공통 답배치가 생각보다 너무 고른거임...
-
어휴 정보만얻고나와야지
-
노병은 죽지 않는다 13
나 공부 시작함 치타 달립니다 딱 대세요
-
이빌트원 레어 가져갈거면 둘다 가져가라고
-
세젤쉬 공통-쎈 이후에 알텍 들으면서 빡t 커리 탈 예정이었는데 정병호 괜찮다는...
-
양가합쳐서30이최대였음 올해는 10 언더일예정
-
첫 풀이 2000덕 드리겠습니다!
-
방금 확인해봤는데 가셨네요..요즘 우울해 보이시던데 행복하시길 바랍니다.
-
3단으로 만들어야지 헤헤
음미.. 문제풀다보면 소름돋더라고요 전율이라해야할까
뒤늦게 질문합니다
2012 21번에서 두 번째 풀이인 세 평면이 하나의 교선을 가진다고 가정하는 것은 가지지 않을 수도 있다는 상황을 배제한 논리적 비약 아닌가요?
또한 2014 29번도 평면화해서, 이루는 각을 세타로 잡고 푸는 것도 논리적 비약 아닌가요?
2014수능을 보자마자 별생각없이 평면화해서 풀어서 맞았지만, 2015수능을 다시 준비하면서 29번에 대한 여러 풀이를 보니 제가 푼 풀이가 논리적 비약이 있다고 느꼈습니다 그래서 29번을 맞은건 운이 좋게 작용한거라고 생각하고있었는데 궁금해서 질문드립니다.
또 수학 1등급 턱걸이 수준에서 실력을 올리신 방법에 대해서 더 여쭤보고 싶습니다
일단 맨 아래 질문은 쪽지로 답변해드렸고...
그게 진정한 수학의 관점에서 보면 논리적 비약이 맞지만 수능 수학을 준비하는 수험생입장에서는 그게 오히려 정당하고 논리적인 길이라고 생각합니다.
그렇기에 기출문제를 꾸준히 공부하고 보는 것이구요.
논리적 비약... 충분히 맞는 말인데
지금 학생에게
'수학적 논리성'
vs
(2014학년도에서 29번을 맞은 것과 같은)
'절대로 운이 아닌 수능적 직감'
둘중에 무엇이 더 중요하신지 고려해보면 답이 나올 것 같습니다.
가지지 않을 경우 직접 해보실수 있어요
한 교선만 삐딱하게 해서 돌려보면