[이동훈t] 영원히 반복되는 구조+실전개념 (2106가18(나21))
게시글 주소: https://sex.orbi.kr/00067936218
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
수능 시험에서
영원히 반복되는 문항 구조,
과목은 다르지만
공통적으로 평가되는
실전개념에 대해서
알아보겠습니다.
전체를 모두 살펴보는 것은
한 개의 칼럼 글에서는 힘들겠고요.
(좀 더 많은 구조 연구+실전개념은
2025 이동훈 기출문제집에 수록된
실전 개념 설명 파트를
참고하시면 됩니다.)
21학년도 6월 모평 가형18 (나형21)
수학1 ㄱ, ㄴ, ㄷ 문제에서 평가된
문항구조+실전개념이
수학2, 미적분에서도
동일한 맥락에서 평가되고 있음을
함께 살펴보겠습니다.
본론 들어가실께요 ~!
힐 위 고 ~!
이 문제를 모두 읽고,
두 곡선을 그리고 나서
아래의 생각들이 바로 들어야 합니다.
(1) 문제에서 주어진 두 곡선을 그리자.
(2) 두 곡선의 두 교점의 x좌표가 모두 -1, 1 사이에 있고,
이차함수 y=-2x^2+2 의 꼭짓점이 (0, 2) 이므로
두 곡선을 바둑판(격자) 위에 그려야 한다.
(이때, 격자를 그리지 않으면 ㄴ을 기하적으로
해석하기 어려울 수 있음)
(3) ㄱ. 사이값 정리
ㄴ. 기울기의 대소 비교 (& 기울기 1)
ㄷ. x1, x2 의 범위 & 2^x = -2x^2 = y 이용
위의 ㄱ, ㄴ, ㄷ에 대한 생각은
사실 그림을 그리지 않았어도
머릿속에 떠올라야 합니다.
어차피 평가하는 것이 정해져 있고,
이는 매우 전형적이기 때문이지요.
요컨대 ...
곡선 2개 -> 교점 -> 경계값(ㄱ), 기울기(ㄴ), 방정식연립(ㄷ)
이게 전광석화 같이
머리를 스치지 않으면
어찌 시험장에서 안정적인 만점을 받으리오 !
참고로
위의 설명은
2025 이동훈 기출문제집의
후반부에 수록된 실전개념에서
모두 다루고 있습니다.
그리고
위에서도 잠깐 언급하였지만 ...
ㄴ에서
y2-y1 < x2-x1
(필충)
(y2-y1) / (x2-x1) < 1
(필충)
두 점 (x1, y1), (x2, y2) 를 잇는 직선의 기울기 < 1(=직선의 기울기)
기울기가 1인 직선을 찾는다.
즉, 연결하면 기울기가 1이 되는 두 점을 찾는다.
는 격자를 그리지 않으면 잘 보이지 않습니다.
특히 3등급 상단~2등급 하단에서
좀 처럼 등급 안오르는 분들은 ...
점 찍어서 그래프 그리는 연습이
많이 부족한 경우가 많습니다.
이거 고치면
최소 3점에서 최대 6~8점까지
오르는 경우가 많으니 ...
그래프를 꼼꼼하게 그리는 연습을
좀 더 하셔야 하고요.
아래는 2025 이동훈 기출의 해설 입니다.
깔끔하죠 ?
ㄱ.
아래는
2025 이동훈 기출 수학1 평가원 편에
수록된 교점 처리에 대한
이론 설명입니다.
자 이제 사이값 정리가 적용된
미적분 문제를 하나 살펴보겠습니다.
10년 전 문제인데요 ...
이 주제에 대한 고전 이라고 봐야겠죠.
ㄱ, ㄴ, ㄷ의 문제 구조에 대해서도
두 개의 곡선 -> 교점(ㄱ)+방정식연립(ㄱ) -> 사이값 정리(ㄴ)
구조가 9년 사이에 바뀌었나요 ?
(순서 정도는 바뀔 수는 있어도 ...)
똑같죠 !
수능은 ...
그냥 never ending, same story 거든.
나 같은 (연습을 많이 한) 사람은
함수 준 것, 문제 구조 보면
딱 보이거든.
어떻게 풀어야 하는지가.
여러분도 이렇게 하셔야 하겠고요 ...
이런 구조에 대한 이해가 없이는
수학을 잘 할 수는 있어도
수능 시험에서 고득점/만점 받는 건 쉽지 않은 일이죠.
그리고 평가원 기출은
(교사경 기출 포함해서...)
반드시 31 년 전체를 풀어 주어야 합니다.
최근 몇 년 간 ...
이렇게 하시면 수능 날 곤란할 수도 있으니.
아래는 맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄴ에 대한 해설 입니다.
(수식을 이용한 해설 또한
2025 이동훈 기출에 수록되어 있습니다.)
수식 보다는
역시 기하적인 관점이
좀 더 출제 의도에 가깝다는
생각이 지금도 듭니다.
ㄴ.
아래는 2025 이동훈 기출 수학1에 수록된
볼록성+직선의 기울기에 대한
실전 개념입니다.
이 주제는 미적분에서
도함수/이계도함수의 관점에서
다시 다룹니다.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
보기 ㄴ에 대응되는 미적분 문제입니다.
차이점 이라면
볼록성+직선의 기울기 에
평균값 정리가 결합된 것 인데요.
이에 대해서는
2025 이동훈 기출 미적분에서
아주 자세하게 다룹니다.
아래는 위의 ㄷ에 대한 해설.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄷ에 대한 해설입니다.
ㄷ.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄷ에 대응되는,
이차함수의 대칭성을
이용해야 하는 문제 입니다.
대칭축에 대하여 두 점이 서로 대칭이다.
이 주제에 대한 문제는 워낙 많은데요.
그 중에서도 가장 이 주제가 잘 드러난 문제이고 ...
두 점을 서로 대칭이동시켜보는 연습이
얼마나 중요한지를 알 수 있습니다.
사실 좀 더 깊게 들어가면
곡선 위의 점의 이동 (평행, 대칭)까지
생각해주어야 하기도 합니다.
아래는 위의 문제에 대한 해설.
오늘 다룬 주제들은 ...
2025 수능에서 반드시 나옵니다.
라고 말한다면
굉장히 높은 확률로 맞을 것입니다.
이 주제들을 꼭 익혀두시고 ...
다른 주제들도 완전 정복 하시길 바랍니다.
다음 주에도 또 만나요 ~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뽀로로는 현자다 0
노는 게 제일 좋아 진리를 깨달으신 분
-
내가 자는 동안 4
무슨 일이 있었던거지
-
으흐흐흐
-
놀지말라는 의견이 대다수더라고 특히 공대는 난 공부도 안하고 놀지도 안안는데 어카냐 진ㅁ자
-
공부해야하는데 0
과외가 11신데
-
잘 살아잇군. 역시는 역시야.
-
와....
-
점공 131명 중 110등으로 상위 84퍼인데 semper 입력해보면 최초합~...
-
다들 조발 기대하고 있는거 같은뎅..? 내일인가?
-
궁금함
-
신이시여 제발 2
좀 해줘라 제발
-
성공할 확률이 낮으니까 신발..
-
어지럽네 역시 일찍 자는게 좋은듯...
-
??
-
얼부기 2
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
그럼 1달 동안 성뽕 가득찰 수 있는데 ㅋㅋㅋㅋ
-
붙으면 국어를 너무 잘봐서고 떨어지면 국어만 잘봐서임
-
설레는군요 3
2년만에 여행이라...
-
조금만 슬픈거 봐도 엉엉 울거 같아
-
쪽지로 밤에 올라온 그것좀 보내주실수있을까요^^ 아무짓안해요 그냥우리아이가그런걸좋아해서그래요;)
-
맞은 엉덩이였음?? 궁금한데 보기 싫고 근데 또 궁금하네;; 이제 못봐서 그런가
-
daegu_talchulgi 안녕하세요
-
당장 결제 갈겨.
-
달았다!!
-
얼버기 5
조은아침.
-
얼버기 3
다시쳐자야지
-
엮어읽기랑 매월승리 풀고 틀린 문제만 해설 봐도 되나요? 아님 문제 풀고 무조건...
-
사탐런 고민중인데요. 여러 이유가 있지만 그 중 하나가 사탐이 내년에도 올해만큼...
-
저 일어난게 아니라 아직 안잔겁니다 점심먹고 자야겠어
-
성대약대하고 서울대 경제하고 어디가야하냐고...성대약대 심지어 장학금도 나와서 더...
-
연세 신학 점공률57% 본인 23명 뽑는 과 23등 하 추합 끝이라도 제에에에발
-
어떻게 사람 이미지랑 음악이랑 이렇게 찰떡일 수가 있지
-
컴에선 뱃지 적용이 안 돼서 자꾸들 물어보시길래 1 좌측 상단 톱니바퀴를 클릭한다...
-
올해 셈퍼 0
작년보다 후하네
-
중앙대야.
-
영어러 입갤 3
뻥임뇨 사실 수능 영어 1컷임뇨
-
동국대학교인데 동동동대문을 열어라(진짜임)
-
이게 분명히 강사가 학생들이 더 좋은 점수를 받게 해 주는 건 맞는데 2
이걸 너무 잘해서 학생들이 오히려 좋은 표점을 받지 못한다? ㅋㅋㅋㅋㅋㅋ
-
경기권중에서요 일산,동탄,분당,수지,영통,수원말고 학구열이나 학원많은 곳 있나요?
-
ㅈㄱㄴ
-
안뜨는데
-
누구 엉덩이 맞은 사진 올라온걸본거같은데 충격받음
-
??
-
일어난지는 2시간넘음 절대 늦잠 아님
-
국어 주간지 3
현역인데 둘중 어떤거 추천하시나요?
-
사탐 vs 과탐 0
혹시 서울대는 무조건 과탐 두개 응시해야 할까요??
-
저 좀 도와주실 수 있나요ㅠㅠ
-
있을까?
-
어제 대체 뭘한겨
감사합니다 도움많이됏급니다