[자작 문항] 6평 대비 22번으로 냈던거
게시글 주소: https://sex.orbi.kr/00068383262
갠적으로 모의고사 하나 만드는 거 보다
감질나게 자작문항 하나하나 올려서 맛 보여주는 게 뭔가 조회수 더 높은듯....
사람들이 관심을 더 많이 가져주는 느낌....
사실 이 문제의 원래 주려던 조건은 f(0)=/=0이었는데....그러면 문제 난이도가 꽤나 상승하는 느낌이 없잖아 있을 거 같아서....문제가 무슨 말하는 지 감을 못 잡겠다고(미리 친구에게 풀려본 결과)하길래....
넵....241122를 모방했습니다....저도 문제 만들면서 ptsd가 심하게 오던ㅋㅋㅋㅋ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
쮸압쮸압 쯉쯉쭈웁 싹-둑
-
탐1반영, 약술형 논술 시행 대학 비호감인데 정상? 2
편법 입시하는거 같음
-
무려 뱃지를 두개나 받을수있자너.. 가성비 ㅆㅅㅊㅊ
-
지금 생윤, 윤사가 많이 어렵게 나오는 만큼 이해 기반의 개념 학습을 해야하지...
-
용기쌤이 자료실에 2026교재 반영된 부분 올려주셔서 2025교재로 재탕 ㄴㅇㅅ
-
심지어 걔도 미적사탐임 선택과목도 경제빼고 다겹치는듯
-
빨고싶다ㅎ 3
막대사탕
-
문닫고 갈게 ㅇㅇ
-
소올직히 동네 수학학원이랑 스타강사 강의랑 다르긴 함 4
풀이법 뿐만 아니라 강의 내용이 차원이 다름
-
내년부터요 확통 과탐 또는 확통 사탐으로 일반 대학 자연 계열 지원 가능한지 궁금합니다
-
수능 전날에도 못자게 방에서 개시끄럽게 전화쳐하고 몇번 ㅈㄴ패도 말안듣는데 어캄?
-
상지한 a형 4
976 수학백분위 98 37/147인데 슬슬 발뻗잠 준비해도 될까요..? 지금까지...
-
몸짱이 되고싶음 3
흠
-
수학 벅벅의 날이였다
-
인생 꿀빨아야지
-
ㅇ.ㅇ
-
최초합을내놔
-
무슨 말인지 알지?
-
일렉기타 보카로 커버 올리고 싶어
-
LA산불 진압에 죄수 900명 투입…"하루 불 끄면 이틀 감형" 2
(서울=뉴스1) 김지완 기자 = 미국 소방당국이 캘리포니아주 로스앤젤레스(LA)...
-
가슴이 웅장해진다
-
고능아에 존예
-
걍 계산을 뒤지게 못함요 계산 복잡하고 기출 아니고 문제27번 29번 쉬운...
-
꺆 0
꺄악♥
-
진짜 모름
-
작수 생1 2등급인 재수생입니다. 작년에는 백호t 커리를 탔습니다.라이브반...
-
일본 과자라는데 신기하네
-
평가원 건 뭘 물어보는지 명확하고 계산도 비교적 깔끔한데요, 이친구들은...
-
지스트정시 성적 4
혹시 지스트 가능할까요..?2025학년도
-
서울대점공 1
아직안했는데... 진학사에서 6칸이었어서 괜히 했다가 쫄리기 싫어서 안함...
-
가까이오지 마라
-
대 범 준 0
“ 스 타 팅 블 록 ” 다섯 글자에환호성
-
미국 연예인들 출연료 보면 뜨악함뇨
-
오답률대로 평한번만 남겨주실수 있나요? Ex) 90% 눈풀이 70% 펜잡아야함...
-
다들 굿밤 9
코코낸내
-
수특 pdf 1
수특 pdf는 언제쯤 나오나요..??
-
예전 1박2일처럼 고생하고 돈받는것도 아니고 재미도 없고 자기들끼리 노는 모습만...
-
답은 정외사학 복전이닷
-
감사합니다
-
버벌진트의 후배가 되고싶다 이적의 후배가 되고싶다아악
-
올해 그 유씨삼대록 옥루몽 옥린몽 전부 다 강e분의 전체줄거리 5-6회독하고...
-
있으면 ㄹㅇ 지릴거같은데
-
팔로우해주실분 9
맞팔 안 받아요 팔로우해주세용 ㅠㅠ
-
WLR @rollingloud K-FLIP
-
언제컴백해tv
-
님들이면 어디감? 이과분들만
-
서강대 경제분들 1학년 수업교재 영어로 되어있는거 있어요? 3
1학년부터 영어수업 해요?
-
이 라인 부터는 인강시간도 포함인거죠?
계산이 0에 수렴이라 맘에 듦
그냥 계산하라고 할 걸 그랬나....그래도 작수22는 해석만 되면 계산이 많은 편은 아니긴 했어요
+0 제외 둘중 하나 미지수로 줘도됨요
이것도 과조건이라면 과조건이라서
사실 이 생각을 못한 것도 아닌데....글에서 말했듯이 말귀를 못알아 먹겠다고 뭐라 하길래...그냥 넣음뇨....
사실 저것도 함수 g(x)=~의 그래프가 로 적는게 맞는데 내가 실수했다 카더라
앞에 함수 있는데 굳이 그래프라는 말을 뒤에 붙여야 되던가....
'함수가 사분면을 지난다' 라는 말은 어색하지
으음 그렇군
이로운에서 비슷한거 봤는데 고트들은 생각이 비슷한가봅니다 ㅋㅋㅋ
이로운에도 이런게 잇었나....23에는 없었던 거 같은데...
2개의 사분면 지나는거 작년꺼수2 풀면거 봤음뇨이
비슷한게 아닌가 아님말고..
글쿤용....주의해서 만들어야겠다....
41
땡
아 사분면이구나
뭔가 -2랑 0을 둘 다 주는 게 과조건같아서 바꿔봤음
이렇게 만들면 더 ㅈ같아질 수도 잇구나....
65???
땡
암산실패 ㄲㅂ
161??
늦었네 ㄲㅂ
161
오 정답
241122같은 느낌 진짜 받았어요
그래서 저도 나름 잘 만들었다고 생각함뇨ㅋㅋㅋㅋ
두개의 사분면만 지난다=원점을 지난다 맞나여??
152/9 맞나요??
정확하내요
(t, f(t))에서의 접선 g(x)가 두 개의 사분면만을 지남
--> g(x) = ax or g(x) = a (a ≠ 0)
(-2, f(-2))에서의 접선이 원점을 지남
& f'(-4/3) = 0 & f'(x) ≥ 0
--> f(x) = 3(x + 2)²x + 4x
∴ f(2/3) = 152/9, p + q = 161
캬ㅑㅑㅑㅑ