칼럼[1] : 망각과 싸우는 방법
게시글 주소: https://sex.orbi.kr/00070764952
[성적 인증]
[칼럼글 모음]
안녕하세요
첫 번째 공부 이야기
[1] 망각과 싸우는 방법
-부제 : 수학 노트 작성 공부법에 대하여
입니다
짧지 않은 글이지만
저의 수학 실력 향상에 가장 큰 도움을 준 방법에 대한 설명이에요
2등급~높음3등급 분들에게 가장 도움이 되리라 생각합니다
1. 밑 빠진 독에 물 붓기?
오늘 공부한 내용, 오늘 풀이한 문제는
공부를 제대로 했다는 가정 하에
잘 기억이 날 거에요
자려고 누워서도 생각이 날 테죠
뿌듯한 그 느낌 저도 알아요
새로운 거 하나를 배웠다…난 더 강해졌다…흠냐…
슬프게도 일 주일만 지나면
우리는 분명 까먹습니다
컴퓨터가 아니라 사람이니까요
여기서 문제가 시작돼요
우리는 문제를 풀면서 수학 공부를 합니다
잘 풀릴 때가 아니라 오래 걸린 문제나 풀지 못한 문제에서
학습은 이루어져요
내가 장악하지 못한 문제를 고민하고 풀이법을 알아가는 것
그게 수학 실력을 높이는 방법의 기본이라고 생각해요
그렇지만 문제가 있어요
분명 오늘 열심히 공부한 문제인데
나중에 비슷한 아이디어를 사용하는 문제
심지어는 오늘 풀었던 바로 그 문제를
똑같이 또 틀린다는거죠
한 번은 그렇다 쳐도
두 번 세 번 네 번…
너무나 안 풀리는 문제를 만나 해설을 읽었는데
저번에 못 떠올린 바로 그 아이디어가 적혀 있을 때
환장할 노릇이죠
밑 빠진 독에 물 붓기라는 생각이 들고
나는 재능이 없는 건가, 대체 언제쯤 이걸 정복할 수 있을까?
그런 암담한 기분이 들어요
이에 대한 해결 방법에는 두 가지가 있다고 생각해요
첫째로는 정말 어마어마하게 많은 실패를 경험하는 방법이 있겠죠
엄청나게 많은 문제를 풀이하고, 계속 벽에 부딪힌다면
결국에는 그 벽을 넘을 수 있겠죠
하지만 불가능합니다
우리 목표는 수학 강사가 되는 게 아니라
올해 안에 대학을 가는 거니까요
그래서 제가 생각한 방법이
바로 수학 노트 작성이에요
수능 수학 문제는
생각보다 다양하지 않아요
문제마다 반복되는 상황과 아이디어들이 있고
그 아이디어를 떠올리게 해주는 일종의 표지도
한정적이라고 생각해요
그렇기에 그 표지와 아이디어들을 효율적으로 학습할 수 있다면
효과적인 실력 향상이 가능하겠죠
2. 수학 노트란?
먼저 방법부터 제시하고, 상세한 설명을 덧붙일게요
준비물은 수학 노트로 사용할 노트 한 권과
뭐가 됐든 여러분 실력에 맞는 수학 컨텐츠
그거면 충분해요
1. 수학 문제를 풀이한다
2. 안 풀리거나 오래 걸린 문제를 만난다
3. 해당 문제를 왜 못 풀었는지 분석하고 학습한다
4. 내가 그 문제를 정복하지 못한 핵심을 한 문장으로 요약한다
5. 해당 문장을 수학 노트에 정리한다
6. 수학 노트를 매일매일 누적 복습한다
누군가는 어, 겨우 이거야? 라고 생각하고
누군가는 엄청 빡세다고 생각할지도 모르겠네요
그럼 상세하게 설명해 보도록 할게요
1) 문제를 푼다
문제를 푸시면 됩니다. 다만 한 가지 유의점은, 시간을 재면서 풀이하는 편이 좋다고 말씀드리고 싶어요
예를 들어 설맞이 n제를 통해 공부해야지
라고 생각을 하셨다면
한 문제 풀고 답을 보는 것보다는
요 다음 다섯 문제를 묶어서 몇분 내로 풀어봐야지
라는 식으로
살짝 빡빡하게 목표를 설정하고 푸는 것이 좋다는 말이에요
시험 상황에서 우리는 준킬러 한 문제를 풀 때마다 답을 확인할 수 없으니까요
이렇게 공부하는 편이 심리적 훈련에 도움이 됩니다
그리고 자신에게 맞는 수학 컨텐츠는
정답률이 50퍼센트정도 나오는 문제집이라고 생각합니다
술술 멋지게 풀리는 문제집은 기분만 좋을 뿐
이미 알고 있는 것들에 대한 훈련 이상의 무언가를 얻을 수 없고
반대로 너무 막히는 문제집은 공부를 지속하기가 어려우니까요
2, 3) 안 풀리거나 오래 걸리는 문제를 만나고 학습한다
내 실력에 버거운 문제를 만났습니다
그러면 이제 학습이 일어날 때라는 거죠
아예 접근을 해내지 못했다면
해설지 첫 줄을 읽고 아이디어를 얻은 뒤 나머지 풀이를 전개해보고
중간에 막혔다면
거기서 한 발짝 나아간 부분까지의 해설을 읽고 나머지를 시도해보고
그런 식으로 문제의 답을 논리적으로 도출합니다
안 풀리는 문제가 있을 때
그리고 한 번 더 필연성을 따져가며 복기까지 한다면
이제 이 문제는 내가 아는 문제가 된 것이겠죠
아마 여기까지는 많은 분들이 이미 하고 계실거에요
설마 풀고 해설 보고 던져버리는 식의 공부를 하는 사람은 없겠죠?
4, 5) 해당 문제에서 나에게 부족했던 부분을
한 문장으로 추출하고, 노트에 정리한다
여기서부터가 이 방법의 핵심입니다
혼자 힘으로 답에 도달하지 못했거나
비효율적이고 과도한 풀이를 했다면
그건 아마 그 문제 전체가 다 어려워서가 아닐 거에요
하나의 문제를 풀어내기 위해 필요한 여러 단계들 중
하나의 핵심적인 연결고리를 찾지 못했거나
시작점을 잡지 못하는 경우가 대부분이에요
그렇다면 나에게 부족한 부분
즉 내 수학 실력이 향상되기 위해 해결해야 할 문제점은
이 문제를 못 푼다가 아니라
이 문제를 푸는데 필요한 A라는 요소를
몰랐거나
알고 있지만 끌어내지 못한 것에 있겠지요
문제를 공부한다는건 그 요소를 찾아내는 과정이에요
그리고 그렇게 찾아낸 수학적 도구를
스스로가 알아들을 수 있는 간결한 문장으로
일반화해서 표현하는 것
이것이 제가 알려드리고자 하는
노트 정리법의 핵심이에요
이해를 돕기 위해 제 수학 노트에 있는 내용의 일부를 가져와봤어요
-기울기가 1인 직선은 풀이에 중요하게 작용하는 경우가 많다.
>직각이등변삼각형의 생성을 통한 닮음 관찰/x좌표와 y좌표간의 연결고리/길이를 옮기는 도구
plus) 기울기가 4/3이나 3/4인 경우는 바로 직각삼각형을 떠올리자
-모르는 좌표를 설정하는 방법에는 두 가지가 있다.
>(a, b)로 설정하는 방법과 (a, a에 대한 식)으로 설정하는 방법. 전자와 후자 각각 장단점이 명확하므로 상황을 관찰한 뒤에 풀이 방향을 생각하자
-복잡한 삼각형 구조는 각표시가 우선이며, 닮음관계 관찰을 놓치는 경우가 많으니 경계하자
-도형 문제에서 자주 놓치는 요소는 사인법칙과 닮음이다
-절댓값 조건의 핵심은 0보다 크거나 같다는 점에 있으므로, 절댓값이 포함된 조건의 해석은 이를 가장 우선시해야 한다
-역함수가 미분 가능하다면 원함수에 미분계수가 0인 지점이 존재하지 않는다(단, 정의된 구간에 항상 주의한다)
간결하게 정리하라고 해서 반드시 한 문장일 필요는 없어요
내가 놓친 그 풀이적 요소를 다른 문제에도 적용할 수 있도록, 되도록 일반성 있는 언어로 풀어내면 된답니다
또한 다항함수의 비율 관계나 도형 문제 접근법처럼
자주 보며 익숙해져야 하는 내용들도 함께 정리할 수 있어요
6) 매일 누적 복습한다
사실 이 부분은 별거 아니어 보이지만
이 방법에서 가장 핵심적이고 지키기 어려운 부분이에요
이렇게 수학노트를 열심히 작성만 한다고 해서
우리가 그 내용을 정복할 수 있는 건 아니니까요
정리만 하고 복습을 게을리한다면
밑 빠진 독에 물 붓기가 되는건 마찬가지에요
오늘 처음 노트 정리를 시작했다면
그만큼의 내용을 저녁 공부가 끝나기 전에 복습해줍니다
어떤 상황에서 사용된 내용인지 떠올려주면서요
여기에 5분이 걸렸다고 해볼게요
그리고 다음 날, 추가적으로 노트를 작성하게 될거고
역시 저녁 공부가 끝났어요
그럼 이제 누적 복습을 할 시간이에요
어제 쓴 내용을 포함해서, 노트의 첫 부분부터 오늘 쓴 부분까지
전체를 복습해줍니다
오늘 새로이 작성한 내용의 양이 어제와 같다고 가정할 때
과연 복습에 10분이 걸릴까요?
아니요
앞부분을 복습하는 데 걸리는 시간은 점점 줄어들게 되고
나중에는 노트의 앞부분은 정말 훑어보듯이 눈에 스치는 것만으로도 복습할 수 있게 됩니다
노트 한 권이 다 채워질 무렵이 되면
노트 전체를 복습하는 것마저도
그리 부담되는 일이 아니게 만드는 것
그게 누적 복습의 목표랍니다
3. 마치며
제가 이번 글에서 알려드릴 방법은 이게 끝이에요
듣기에는 쉬워 보이지만 정말 강한 의지가 필요해요
그러나 그 효과는 다른 어떤 공부 방법보다
뛰어나다고 생각해요
재능과 수학적 센스가 부족한 사람도
이 방법을 통해 수능 수학이 요구하는 생각의 도구들을
자신의 언어로 표현하고 이를 익혀나간다면
적어도 수능 수학만큼은 잘할 수 있을거라 생각해요
90점을 넘기지 못하고 80초중반에 정체되었던 제가
평가원 백분위 99도 받아보고
사설 모의고사에서 10분 20분씩 시간을 남기는 일도 생길 만큼
어디서 수학을 꽤나 잘한다고 말할 수 있게 된 데는
이 방법을 통해 공부한 것이 가장 큰 도움이 되었으니까요
오늘의 공부 이야기는 이쯤에서 마치도록 할게요
디테일한 부분에 궁금한 점이 있거나
다음 공부 이야기에서 개선되었으면 하는 부분이 있다면
무엇이든 편하게 댓글로 말씀해주세요
저는 올해 원서 접수가 끝난 후에
다음 공부 이야기
[2] 실수를 줄이는 방법
에서 다시 찾아뵙겠습니다
도움이 되었다면
좋아요, 팔로우 한번씩 부탁드립니다 :)
[성적 인증]
[칼럼글 모음]
0 XDK (+10,000)
-
10,000
-
항공사진 AI 분석, 동대구역에 15만 인파…윤석열 대통령 탄핵반대 한 목소리 1
대구 동대구역 일대가 거대한 인파로 가득 찼다. 8일 오후 열린 윤석열 대통령 탄핵...
-
생각했던 거 보다 더 시골이네 ㅇㅅㅇ..
-
국어/과학: 시급 2만 7천원 수학: 시급 3만원 영어: 시급 2만 5천원 스펙 -...
-
다 씻었다 0
이제 운동하고 옴
-
"법원 신뢰 확고했다면 서부지법 사태 있었겠나"…윤준, 법복 벗으며 직격 1
【 앵커멘트 】 윤준 서울고등법원장이 자신의 퇴임식에서 서울서부지법 사태를 거론하며...
-
강민철 비문학 1
강민철 비문학 풀이 어떰 좋음?? 김동욱이랑 비교하면 어떰?
-
클리닉 쌀먹용 없냐...3~4등급대
-
슬의생 시즌 1 정주행 완료
-
ㅋㅋㅅㅂ 클리닉병행용으로 좋은거잇나 정석민? 정석민 그거잇자나 수업 리뷰용 독학서 맞나?
-
굿즈 샀는데 집에 오니까 왜 없노... 자는 사이에 쇼핑백 털어갔나 아
-
잔치국수 드가자~
-
뇌 개조 시켜줘
-
스테이크 초밥 딱 대
-
생지? 화생?
-
과탐도 수학만큼이나 기출이 중요한가요? 모든 문항 강의 듣고있긴 한데 수학은 아...
-
먹을까말까 하 .. 먹고 산책좀 할까..
-
그렇다네여 6
-
ㅈㄱㄴ
-
화학하면 안됨 7
풀다가 화남 화2는 화1 두배로 많이 남
-
아파트 지하상가에서 톰브라운을 파네 ㄷㄷ 신세계 뭐시기긴 했는데... ㅋㅋㅋㅋㅋㅋ
-
ㄹㅇ
-
고려대 농어촌 보건정책관리학부 최초합하신 분 없나요?ㅜㅠ
-
ㅈㅅ합니다
-
헤어져야할까?? 술 자주하고 좋아하는 편 문제는 나한테 비밀로 남사친이랑 술...
-
어디론가데려가줘요 나날이 저무는 나의 거리에서 바라보고 있어요 그대가 흐르는 밤을
-
물리하면 안 됨 5
금방 물림
-
퇴근까지 약 4
11640시간
-
쿠팡같이 배송하는거말고
-
수업은 기출로 나간다쳐도 숙제는 무슨책으로 내줘야해요?? 수학만큼 n제가 있는 것도...
-
고급스킬 0
한 손으로는 과자 먹고 한 손으로는 오르비 중
-
경제.. 굉장히 매력있고 문제도 재밌는 것 같지만 재밌기만 할수도 있는 과목이...
-
편입vs삼반수 8
편입면 연고 목표 ㅇㅇ 삼반수면 연고 높공~메디컬 성적폭은 이럼 현역6모 51 92...
-
기출을 풀면서 내가 약한 유형을 n제로 많이 풀면서 단련하고자 합니다. 일단 몇 권...
-
둔감성 테스트 4
전생에 곰탱이가 아니었을까
-
자유의지를 허용하면 죄를 짓고 악해질수도 있는데 악의 탄생을 막는것(자유의지의...
-
멋있어
-
저녁 ㅇㅈ 2
빨뚜마셧더니 몸이이상해요..
-
상남자 ㅇㅈ
-
공부했을 때 지금이 더 쉽다는 거지 독서는 이해하지 못하면 풀 수가 없을 거라는 걸...
-
예상댓글 : -던-
-
재수 커로 0
재수에서 평백 약10 이상 떨어지고, 정시도 최초 3떨인데 전추 기달려야 할 판인데...
-
미안해 잡담태그 다음부턴 달게 돌아와줘
-
트럼프, 이시바에게 “잘생겼다, 나도 그 정도로 생겼으면 좋았을텐데” 7
첫 정상회담 회견 화기애애 “위대한 총리가 될 것”덕담 도널드 트럼프 미국 대통령이...
-
안녕하세요 올해로 25살이 되는 사람입니다. 24년까지 서성한 중 하나의 학교를...
-
테스트 구리네 ㅇㅇ
-
맞팔구구팔십일 6
쿠후후
-
저녁 5
조촐하게
-
하지만 입터면 양뺨싸다구 마려움
![](https://s3.orbi.kr/data/emoticons/dangi/034.png)
잘 읽을게요 고맙습니다 ㅅㅅㅅㅅ당연하다고만 생각해서 소홀히했던 부분이네용 잘봤습니다
![](https://s3.orbi.kr/data/emoticons/oribi_animated/015.gif)
잊는 것은 병이 맞군요이상 한줄요약이었습니다
글은 잘 읽어봤어요