[수학] 24학년도 6월 주관식ㄱㄴㄷ문제 쉬운 풀이
게시글 주소: https://sex.orbi.kr/00071865931
안녕하세요. 간만입니다.
먼저 f(t)는
방정식
의 실근입니다.
근데 이 문제에선 결국 t값을 엄청 많이 움직여봐야 하는데,
t값에 따라 그래프 2개를 모두 움직이는건 매우 비효율적이며, 불편합니다.
방정식을 조작해도 실근은 변하지 않으므로, 주어진 방정식을 다음과 같이 변형해봅시다.
이렇게 만들었을 때의 이점은,
의 그래프를 상황의 기본으로 삼아줄 수 있습니다.
파란색 지수함수에서, 점 (0,-1)을 '기준점' 이라 생각해봅시다.
t값을 조정함에 따라 이 기준점이 빨간 직선인 y=x-1 위를 움직이게 하면 됩니다.
이 때 파란 지수함수와 검정색 로그함수의 교점의 x좌표가 바로 f(t)가 된다고 생각해줄 수 있습니다.
이 사실만을 이용해도 ㄱ,ㄴ은 쉽게 풀어낼 수 있습니다.
관건은 ㄷ인데요, 저 '기준점'의 입장에서 한 번만 더 생각해봅시다.
어떤 t값에 대하여
(0,-1)에서 x축으로 +t만큼, y축으로 +t만큼 시킨 점 (t,t-1)이 새로운 지수함수의 '기준점' 이 될 것이고
이 때, 파란 그래프와 검은 그래프가 만나는 점의 x좌표가 f(t)가 된다는 사실을 생각해볼 수 있습니다.
즉, ㄷ에서의 f(t)와 t와의 비교는 결국
"기준점" 와 "교점" 의 "x좌표의 비교"
로써 쉽게 가능해집니다.
이렇게되면, 그냥 기준점을 서서히 옮기는 것만으로도
ㄷ이 거짓이 되는 상황이 있음을 판단해볼 수 있습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
마자요 식 정리해서 평행이동 관점으로 보면 뚝딱!
저도 원래 기본 식으로 생각하면 너무 어렵더라구요,,
일단 문제 포맷이 킹받
ㄹㅇㅋㅋ 참거짓 이진법..